skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions (or sectors) with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure that the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of “air-credits” (an artificial currency) and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: (1) computes a fractional competitive equilibrium, and (2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for the emerging urban air mobility service of drone delivery. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. Abstract Specification and forecast of ionospheric parameters, such as ionospheric electron density (Ne), have been an important topic in space weather and ionospheric research. Neural networks (NNs) emerge as a powerful modeling tool forNeprediction. However, heavy manual adjustments are time consuming to determine the optimal NN structures. In this work, we propose to use neural architecture search (NAS), an automatic machine learning method, to mitigate this problem. NAS aims to find the optimal network structure through the alternate optimization of the hyperparameters and the corresponding network parameters within a pre‐defined hyperparameter search space. A total of 16‐year data from Millstone Hill incoherent scatter radar (ISR) are used for the NN models. One single‐layer NN (SLNN) model and one deep NN (DNN) model are both trained with NAS, namely SLNN‐NAS and DNN‐NAS, forNeprediction and compared with their manually tuned counterparts (SLNN and DNN) based on previous studies. Our results show that SLNN‐NAS and DNN‐NAS outperformed SLNN and DNN, respectively. These NN predictions ofNedaily variation patterns reveal a 27‐day mid‐latitude topsideNevariation, which cannot be reasonably represented by traditional empirical models developed using monthly averages. DNN‐NAS yields the best prediction accuracy measured by quantitative metrics and rankings of daily pattern prediction, especially with an improvement in mean absolute error more than 10% compared to the SLNN model. The limited improvement of NAS is likely due to the network complexity and the limitation of fully connected NN without the time histories of input parameters. 
    more » « less
  3. null (Ed.)